Abstract

The unrestrained Li dendrite growth impedes the performance of Li metal batteries (LMBs) and brings safety concerns. To mitigate the unfavorable effect of Li dendrites, in this work, a shield-like artificial interlayer composed of Si3N4 is employed to achieve the desirable electrochemical performance of LMBs. The Si3N4-based interlayer can in-situ electrochemically react with Li to generate inorganic Li3N and LixSi alloys: the former with high ionic conductivity can effectively enhance the Li+ transference, while the latter with reversibility for Li+ insertion/deinsertion can act as Li+ reservoir to modulate Li+ platting/stripping. Thus, the Si3N4-derived compound shield effectively defends against the attack of Li dendrites and suppresses their growth, with which the Li||Li cells can cycle at 1 mA cm−2 (1 mAh cm−2) up to 500 h and the LiFePO4 (LFP) ||Li batteries can operate 400 cycles at 1C with 91.5 % capacity retention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.