Abstract

Four types of monolayer-protected gold nanoclusters (MPCs) were synthesized and characterized as active layers of vapor sensors. An interdigitated microelectrode (IDE) and quartz crystal microbalance (QCM) were used to measure the electrical resistance and mass loading changes of MPC films during vapor sorption. The vapor sensing selectivity was influenced by the ligand structure of the monolayer on the surface of gold nanoparticles. The responses of MPC-coated QCM were mainly determined according to the affinity between the vapors and surface ligands of MPCs. The responses to the resistance changes of the MPC films were due to the effectiveness of the swelling when vapor was absorbed. It was observed that resistive sensitivity to polar organics could be greatly enhanced when the MPC contained ligands that contain interior polar functional groups with exterior nonpolar groups. This finding reveals that reducing interparticle attraction by using non-polar exterior groups could increase effective swelling and therefore enhance the sensitivity of MPC-coated chemiresistors.

Highlights

  • The detection and control of volatile organic compounds (VOCs) remains a vital issue for air pollution in both industrial and residential areas

  • The vapor sorption responses are rapid and reversible, which indicates that the nanoparticle film is highly permeable for VOCs

  • The minor changes in surface polarity and interparticle attraction can only be reflected by chemiresistor selectivity

Read more

Summary

Introduction

The detection and control of volatile organic compounds (VOCs) remains a vital issue for air pollution in both industrial and residential areas. Because of their diversity of chemical functions and toxicity, rapid-response and highly selective sensors for VOCs are imperative for resolving the environmental problems associated with these compounds [1]. There have been breakout developments in nanotechnology, and several novel nanomaterials have been applied to the innovative chemical sensors. These nanomaterials include carbon nanotubes, nano-TiO2, and metal nanoparticles [2,3,4].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call