Abstract

Type XIII collagen is a transmembrane collagen, which is known to exist also as a soluble variant due to ectodomain shedding. Earlier studies with the recombinant ectodomain have shown it to interact in vitro with a number of extracellular matrix proteins, e.g. Fn (fibronectin). In view of its strong binding to Fn, we examined in the present study whether the released soluble ectodomain can bind to the fibrillar Fn matrix under cell-culture conditions and, if so, influence its assembly. In this study, we demonstrate that the type XIII collagen ectodomain of mammalian cells can associate with Fn fibres and may eventually hamper incorporation of the fibrillar Fn meshwork. The association between type XIII collagen and Fn was implicated to be mediated by the C-terminal end of type XIII collagen and the N-terminal end of Fn. The results presented here imply that the shedding of the type XIII collagen ectodomain results in a biologically active molecule capable of remodelling the structure of the pericellular matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.