Abstract

Abstract The investigation of the structural performance of reinforced concrete members in the construction process has become a critical issue for Hybrid GFRP bars with steel bars. The ultimate concrete shear strength of reinforced concrete beams contains both GFRP bars and Steel bars in main reinforcement are a main task of work. This paper examines the effect of sharing the fiber-reinforced polymer (FRP) bars with steel bars for reinforced concrete (RC) structures on the concrete shear strength of RC beams. Fourteen RC beams without shear reinforcement were constructed and tested up to failure. The test beams included two steel-RC beams, one GFRP-RC beam, and eleven steel bars and GFRP bars (hybrid GFRP/steel)-RC beams. The main parameters were the reinforcement ratio, shear span to depth ratio, depth of the beam, concrete compressive strength, and compression reinforcement. The test results are presented in terms of crack patterns, failure modes, load-deflection, and load-strain behavior. The test results showed that hybrid GFRP/steel bars causing significant improvement in the ductility with reduction of the deformation comparing with an only steel bar in main steel in tested beams. The dowel action can play a major role in the process by which shear is carried in a beam. Finally, the initial proposal equation that calculates the shear strength of hybrid reinforced elements can serve as a guideline for the introduction of hybrid bars (GFRP and Steel) at the main reinforcement in RC beams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.