Abstract

AbstractThe effect of ice content and normal load on the shear strength characteristics of a frozen coarse granular debris was investigated. 31 shear tests were carried out in a modified shearbox allowing a sample temperature of (–1.0 ± 0.2)° C and a load rate of 9.63 × 10−4cm/min. The tests showed that as the ice content of the frozen debris was increased from 0% (under-saturated) to 25% (saturated), sample shear strength was markedly increased. In contrast, sample shear strength was reduced as ice content was increased from 25% (saturated) to 100% (supersaturated). The changes in shear strength with increasing ice content were attributed directly to changes in internal friction and the cohesive effects of the pore ice. The shear tests also indicate that shear strength increases with increasing normal load up to a critical limit. Above this limit, dilatancy is suppressed causing the shear strength to decrease or remain relatively constant with increased normal load.The stress-strain curves of the 31 tests indicated that samples with higher ice contents tended to reach peak strength (τP) with less displacement during shear. Moreover, the difference between τpand τr(residual strength) was lowest for pure polycrystalline ice and highest for ice-saturated samples. The Mohr-Coulomb failure envelopes displayed very distinctive parabolic curvilinearity. The degree of curvature is thought to be a function of ice creep at low normal loads and particle fracture and crushing at high normal loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.