Abstract
Abstract In this chapter, the āShark Attack Problemā (Chapter 11) is revisited. Markov Chain Monte Carlo (MCMC) is introduced as another way to determine a posterior distribution of Ī», the mean number of shark attacks per year. The MCMC approach is so versatile that it can be used to solve almost any kind of parameter estimation problem. The chapter highlights the Metropolis algorithm in detail and illustrates its application, step by step, for the āShark Attack Problem.ā The posterior distribution generated in Chapter 11 using the gamma-Poisson conjugate is compared with the MCMC posterior distribution to show how successful the MCMC method can be. By the end of the chapter, the reader should also understand the following concepts: tuning parameter, MCMC inference, traceplot, and moment matching.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.