Abstract

ABSTRACT In order to understand the formation of the multipolar structures of the pre-planetary nebula CRL 618, we perform 3D simulations using a multidirectional bullet model. The optical lobes of CRL 618 and fast molecular outflows at the tips of the lobes have been found to have similar expansion ages of ∼100 yr. Additional fast molecular outflows were found near the source along the outflow axes with ages of ∼45 yr, suggesting a second episode of bullet ejections. Thus, in our simulations, two episodes of bullet ejections are assumed. The shaping process is simulated using the ZEUS-3D hydrodynamics code that includes molecular and atomic cooling. In addition, molecular chemistry is also included to calculate the CO intensity maps. Our results show the following: (1) Multiepoch bullets interacting with the toroidal dense core can produce the collimated multiple lobes as seen in CRL 618. The total mass of the bullets is ∼0.034 M ⊙, consistent with the observed high-velocity (HV) CO emission in fast molecular outflows. (2) The simulated CO J = 3–2 intensity maps show that the low-velocity cavity wall and the HV outflows along the lobes are reasonably consistent with the observations. The position–velocity diagram of the outflows along the outflow axes shows a linear increase of velocity with distance, similar to the observations. The ejections of these bullets could be due to magnetorotational explosions or nova-like explosions around a binary companion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.