Abstract
We analyse maps of the spatially-resolved nebular emission of $\approx$1500 star-forming galaxies at $z\approx0.6$-$2.2$ from deep KMOS and MUSE observations to measure the average shape of their rotation curves. We use these to test claims for declining rotation curves at large radii in galaxies at $z\approx1$-$2$ that have been interpreted as evidence for an absence of dark matter. We show that the shape of the average rotation curves, and the extent to which they decline beyond their peak velocities, depends upon the normalisation prescription used to construct the average curve. Normalising in size by the galaxy stellar disk-scale length after accounting for seeing effects ($R_{\rm{d}}^{\prime}$), we construct stacked position-velocity diagrams that trace the average galaxy rotation curve out to $6R_{\rm{d}}^{\prime}$ ($\approx$13 kpc, on average). Combining these curves with average HI rotation curves for local systems, we investigate how the shapes of galaxy rotation curves evolve over $\approx$10 Gyr. The average rotation curve for galaxies binned in stellar mass, stellar surface mass density and/or redshift is approximately flat, or continues to rise, out to at least $6R_{\rm{d}}^{\prime}$. We find a trend between the outer slopes of galaxies' rotation curves and their stellar mass surface densities, with the higher surface density systems exhibiting flatter rotation curves. Drawing comparisons with hydrodynamical simulations, we show that the average shapes of the rotation curves for our sample of massive, star-forming galaxies at $z\approx0$-$2.2$ are consistent with those expected from $\Lambda$CDM theory and imply dark matter fractions within $6R_{\rm{d}}$ of at least $\approx60$ percent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.