Abstract

In the deep high stress coal and rock mass, the efficiency of the ordinary blasting method is constantly affected by the high pressure. This study investigates the shaped blasting technology with increased blasting efficiency, develops a mechanical model for coal crack expansion during shaped blasting, and examines the force-energy action of energy-gathering jets during coal splitting. The established model was combined with experiments and simulations to reveal the damage and evolution of cracks in coal and rock masses. Experiments demonstrate that shaped blasting can create an energy-gathering jet that causes a directional fracture in the test block. The peak of compressive strain in the energy-gathering direction is 1.12 times greater than that of ordinary blasting, and the static action period of the explosive gas is prolonged by 1.3 μs according to the stress curve. Moreover, the peak pressure strain increased 3.2 times, and the pull strain peak increased 3.92 times. The damage amount was represented by the resistivity and ultrasonic wave speed, and shaped blasting causes 1.2 and 1.5 times greater damage than ordinary blasting. The research results provide technical methods for safe and rapid penetration blasting in deep high-ground stressed coal mines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call