Abstract

Theories of stellar orbit diffusion in disk galaxies predict different rates of increase of the velocity dispersions parallel and perpendicular to the disk plane, and it is therefore of interest to measure the different velocity dispersion components in galactic disks of different types. We show that it is possible to extract the three components of the velocity ellipsoid in an intermediate-inclination disk galaxy from measured line-of-sight velocity dispersions on the major and minor axes. On applying the method to observations of the Sb galaxy NGC 488, we find evidence for a higher ratio of vertical to radial dispersion in NGC 488 than in the solar neighbourhood of the Milky Way (the only other place where this quantity has ever been measured). The difference is qualitatively consistent with the notion that spiral structure has been relatively less important in the dynamical evolution of the disk of NGC 488 than molecular clouds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.