Abstract
The human mirror neuron system is a fronto-parietal neural pathway which, when activated by action observation, gives rise to an internal simulation of the observed action (motor resonance). Here we demonstrate how handedness shapes the resonant response, by engaging right-handed (RH) and left-handed (LH) subjects in observation and execution of actions preferentially performed by the dominant hand. We hypothesize that since motor resonance reproduces subliminally the specific motor program for the observed action, it should be subject to motor constraints, such as handedness. A conjunction analysis for observed and executed actions revealed that handedness determines a lateralized activation of the areas engaged in motor resonance. Premotor-BA6 and parietal-BA40 are strongly left lateralized in RH subjects observing or moving their right hand, and to a lesser degree their left hand. Extremely LH subjects show a similar pattern of lateralization on the right, while more ambidextrous LH subjects show a more bilateral activation. The activation of a cortical network outside the mirror neuron system is also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.