Abstract
We calculate the mean end-to-end distance R of a self-avoiding polymer encapsulated in an infinitely long cylinder with radius D. A self-consistent perturbation theory is used to calculate R as a function of D for impenetrable hard walls and soft walls. In both cases, R obeys the predicted scaling behavior in the limit of large and small D. The crossover from the three-dimensional behavior (D --> infinity) to the fully stretched one-dimensional case (D --> 0) is nonmonotonic. The minimum value of R is found at D approximately 0.46R(F), where R(F) is the Flory radius of R at D --> infinity. The results for soft walls map onto the hard wall case with a larger cylinder radius.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.