Abstract

Shape-memory polymers (SMPs) have gradually emerged in the mechanism and biomedical fields and facilitate the upgrading of industrial mechanisms and the breakthrough of technical bottlenecks. However, most of the SMPs are infeasible in harsh environments, such as aerospace, due to the low glass transition temperature. There are still some works that remain in creating truly portable or non-contacting actuators that can match the performances and functions of traditional metal structures. Polyether-ether-ketone (PEEK) with a high glass transition temperature of 143 °C is endowed with outstanding high-temperature resistance and radiation-resistant properties and shape memory behavior. Thus, we explore the shape-memory properties and actuation performances of high-temperature PEEK in bending behaviors. The shape-recovery ratio, actuation speed and force under different programming conditions and structure parameters are summarized to complete the actuation capacities. Meanwhile, a metallic ball transported by shape-memory PEEK and deployed drag sail with thermo-responsive composite joints were shown to verify the potential in aerospace.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.