Abstract
Mismatch removal is a key step in many computer vision problems. In this paper, we handle the mismatch removal problem by adopting shape interaction matrix (SIM). Given the homogeneous coordinates of the two corresponding point sets, we first compute the SIMs of the two point sets. Then, we detect the mismatches by picking out the most different entries between the two SIMs. Even under strong affine transformations, outliers, noises, and burstiness, our method can still work well. Actually, this paper is the first non-iterative mismatch removal method that achieves affine invariance. Extensive results on synthetic 2D points matching data sets and real image matching data sets verify the effectiveness, efficiency, and robustness of our method in removing mismatches. Moreover, when applied to partial-duplicate image search, our method reaches higher retrieval precisions with shorter time cost compared with the state-of-the-art geometric verification methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.