Abstract

A theoretical model is proposed to analyze the shape effect on the retention behaviors of rod-like particles in field-flow fractionation. This model is improved from a previous model for slender-body rods by Park and Mittal [Chromatography (2015) 2: 472–487]: The model can predict the retention behaviors of the rods, of which shape is assumed as a prolate ellipsoid, with low and high aspect ratios in various flow conditions of the flow-field flow fractionation. The effects of rod aspect ratio on the retention behaviors of the rods with the same volume are investigated in each operation mode. In normal mode, the retention ratio decreases with increasing aspect ratio. In steric-entropic mode, where we substantially improved the model to evaluate the rod orientation and the cross-sectional concentration distribution more rigorously based on our recent studies [Nanomaterials (2018) 8:130; Chem. Eng. Sci. (2018) 189:396-400], the retention ratio increases with the increasing aspect ratio. In steric mode, the retention ratio decreases with increasing aspect ratio again. Those results are discussed based on how the cross-sectional concentration distributions are affected by the aspect ratio. The new criteria for the prediction of each mode are also discussed and suggested Comparison with the experimental data shows the qualitative agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.