Abstract

Laboratory measurements on the instability of axisymmetric capillary surfaces pinned to the corners of annular grooves of rectangular section rotating at constant angular velocity 52 have been conducted. In stable configurations the fluid contact lines remain pinned to the corners of the groove with contact angles relative to the inner and outer vertical walls. Using water as the test fluid in narrow grooves of nearly constant width, the critical frequency 52, for instability generally decreases with increasing overfill volume AV and mean groove radius. Numerical integration of the describing equation gives the shape of the rotating meniscus as a function of five independent parameters. In the range of contact angles el,* < x, a comparison of experimental results with numerically computed meniscus profiles suggests three mechanisms for contact line movement based on the effective static advancing (8,) and receding (8,) contact angles for liquid pinned to a sharp corner. Measurements of critical frequencies over a wide range of overfill volumes in six different grooves are in favourable agreement with composite regime diagrams for the critical static meniscus configuration. An interesting feature of this system is the existence of a range of overfill volumes inaccessible to experiments conducted by fixing the overfill volume on a stationary disk and subsequently elevating the disk rotation until contact line movement is observed. Numerical studies showing the effects of Bond number, groove curvature and contact angle hysteresis are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call