Abstract
In this work, we develop the shadow formalism for two-dimensional Galilean conformal field theory (GCFT2). We define the principal series representation of Galilean conformal symmetry group and find its relation with the Wigner classification, then we determine the shadow transform of local operators. Using this formalism we derive the OPE blocks, Clebsch-Gordan kernels, conformal blocks and conformal partial waves. A new feature is that the conformal block admits additional branch points, which would destroy the convergence of OPE for certain parameters. We establish another inversion formula different from the previous one, but get the same result when decomposing the four-point functions in the mean field theory (MFT). We also construct a continuous series of bilocal actions of MFT, and an exceptional series of local actions, one of which is the BMS free scalar model. We notice that there is an outer automorphism of the Galilean conformal symmetry, and the GCFT2 can be regarded as null defect in higher dimensional CFTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.