Abstract

Plants at high population density compete for light, showing a series of physiological responses known as the shade avoidance syndrome. These responses are controlled by the synthesis of the hormone auxin, which is regulated by two signals, an environmental one and an internal one. Considering that the auxin signal induces plant growth after a time lag, this work shows that plant growth can be modelled in terms of an energy-like function extremization, provided that the Markov property is not applied. The simulated height distributions are bimodal and right skewed, as in real community of plants. In the case of isolated plants, theoretical growth dynamics and speed correctly fit Arabidopsis thaliana experimental data reported in literature. Moreover, the growth dynamics of this model is shown to be consistent with the biomass production function of an independent model. These results suggest that memory effects play a non-negligible role in plant growth processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.