Abstract

AbstractFor a lattice L of ℝn, a sphere S(c, r) of center c and radius r is called empty if for any v ∈ L we have. Then the set S(c, r) ∩ L is the vertex set of a Delaunay polytope P = conv(S(c, r) ∩ L). A Delaunay polytope is called perfect if any aõne transformation ø such that ø(P) is a Delaunay polytope is necessarily an isometry of the space composed with an homothety.Perfect Delaunay polytopes are remarkable structures that exist only if n = 1 or n ≥ 6, and they have shown up recently in covering maxima studies. Here we give a general algorithm for their enumeration that relies on the Erdahl cone. We apply this algorithm in dimension seven, which allows us to find that there are only two perfect Delaunay polytopes: 321, which is a Delaunay polytope in the root lattice E7, and the Erdahl Rybnikov polytope.We then use this classification in order to get the list of all types of Delaunay simplices in dimension seven and found that there are eleven types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call