Abstract

Serine peptidases (SPs) of the chymotrypsin S1A subfamily are an extensive group of enzymes found in all animal organisms, including insects. Here, we provide analysis of SPs in the yellow mealworm Tenebrio molitor transcriptomes and genomes datasets and profile their expression patterns at various stages of ontogeny. A total of 269 SPs were identified, including 137 with conserved catalytic triad residues, while 125 others lacking conservation were proposed as non-active serine peptidase homologs (SPHs). Seven deduced sequences exhibit a complex domain organization with two or three peptidase units (domains), predicted both as active or non-active. The largest group of 84 SPs and 102 SPHs had no regulatory domains in the propeptide, and the majority of them were expressed only in the feeding life stages, larvae and adults, presumably playing an important role in digestion. The remaining 53 SPs and 23 SPHs had different regulatory domains, showed constitutive or upregulated expression at eggs or/and pupae stages, participating in regulation of various physiological processes. The majority of polypeptidases were mainly expressed at the pupal and adult stages. The data obtained expand our knowledge on SPs/SPHs and provide the basis for further studies of the functions of proteins from the S1A subfamily in T. molitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call