Abstract
In this paper, we discuss a continuous self-map of an interval and the existence of an uncountable strongly chaotic set. It is proved that if a continuous self-map of an interval has positive topological entropy, then it has an uncountable strongly chaotic set in which each point is recurrent, but is not almost periodic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.