Abstract

Let C be the space of all real-valued continuous functions defined on the unit interval provided with the uniform norm. In the Scottish Book, Banach raised the question of the descriptive class of the subset D of C consisting of all functions which are differentiable at each point of [0,1]. Banach pointed out that D forms a coanalytic subset of C and asked whether D is a Borel set. Later Mazurkiewicz showed that D is not a Borel set [3]. In this paper, we shall investigate the subset M of C consisting of all functions which do not have a finite derivative at any point of [0,1]. It is well known that M is residual in C [2]. We shall prove the following theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.