Abstract

Dysfunction in the serotonin (5-hydroxytryptamine) system and reduced serotonin concentrations have been reported in patients with Parkinson’s disease (PD). Serotonin concentrations in neural tissue are controlled by a presynaptic serotonin transporter protein that is encoded by a single gene. Therefore, we investigated whether a polymorphic region in the serotonin transporter gene is associated with PD. Three variable-number tandem repeat (VNTR) elements of the serotonin transporter gene were detected by polymerase chain reaction, those with 9, 10, 11 and 12 copies of the repeat element. The 10-copy VNTR element was significantly less common in patients with PD than controls in the univariate analysis (p < 0.05). Logistic regression analysis revealed no significant differences between patients (n = 198) and controls (n = 200) in the distribution frequencies of 9- and 12-copy alleles and combined genotypes (odds ratio = 1.20; p = 1.71). A positive family history of PD was a strong predictor of disease risk (odds ratio = 2.98; 95% confidence interval 1.51–5.87; p = 0.001). Although slight differences were observed between patient and control groups, these data suggest that defects in serotonin concentrations in patients with PD are unlikely to be due to polymorphisms in the serotonin transporter gene in this large Australian cohort; however, the inverse association observed with the 10-copy allele warrants further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call