Abstract

Reliable communication between transmitter and receiver is accomplished by cooperative diversity techniques. Sending of data in various paths has greatly improved the performance of communication. We have studied the performance of Amplify-and-Forward (AF) based network in this work for diverse relay location at Nakagami, Rician and Rayleigh fading channels. The relay performance in Amplify-and-Forward (AF) protocol based on Symbol Error Rate (SER) against Signal-to-Noise Ratio (SNR) in dBs is calculated. The software that is used to construct Monte-Carlo link level simulation is MATLAB. The effects of a relay at changed location in diverse channels accompanied with Additive White Gaussian noise (AWGN) is also calculated. BPSK modulation scheme is used for the transfer of information between the source, relay and destination node. The signals are combined through Maximum Ratio Combining method (MRC).Reliable communication between transmitter and receiver is accomplished by cooperative diversity techniques. Sending of data in various paths have greatly improved the performance of communication. We have studied the performance of Amplify-and-Forward (AF) based network in this work for diverse relay location at Nakagami, Rician and Rayleigh fading channels. The relay performance in Amplify-and-Forward (AF) protocol based on Symbol Error Rate (SER) against Signal-to-Noise Ratio (SNR) in dBs is calculated. The software that is used to construct Monte-Carlo link level simulation is MATLAB. The effects of relay at changed location in diverse channels accompanied with Additive White Gaussian noise (AWGN) is also calculated. BPSK modulation scheme is used for the transfer of information between the source, relay and destination node. The signals are combined through Maximum Ratio Combining method (MRC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.