Abstract

The non-motile cilium, once believed to be a vestigial cellular structure, is now increasingly associated with the ability of a wide variety of cells and organisms to sense their chemical and physical environments. With its limited number of sensory cilia and diverse behavioral repertoire, C. elegans has emerged as a powerful experimental system for studying how cilia are formed, function, and ultimately modulate complex behaviors. Here, we discuss the biogenesis, distribution, structures, composition and general functions of C. elegans cilia. We also briefly highlight how C. elegans is being used to provide molecular insights into various human ciliopathies, including Polycystic Kidney Disease and Bardet-Biedl Syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.