Abstract

Abstract. The Southern Ocean is a complex system yet is sparsely sampled in both space and time. These factors raise questions about the confidence in present sampling strategies and associated machine learning (ML) reconstructions. Previous studies have not yielded a clear understanding of the origin of uncertainties and biases for the reconstructions of the partial pressure of carbon dioxide (pCO2) at the surface ocean (pCO2ocean). We examine these questions through a series of semi-idealized observing system simulation experiments (OSSEs) using a high-resolution (± 10 km) coupled physical and biogeochemical model (NEMO-PISCES, Nucleus for European Modelling of the Ocean, Pelagic Interactions Scheme for Carbon and Ecosystem Studies). Here we choose 1 year of the model sub-domain of 10∘ of latitude (40–50∘ S) by 20∘ of longitude (10∘ W–10∘ E). This domain is crossed by the sub-Antarctic front and thus includes both the sub-Antarctic zone and the polar frontal zone in the south-east Atlantic Ocean, which are the two most sampled sub-regions of the Southern Ocean. We show that while this sub-domain is small relative to the Southern Ocean scales, it is representative of the scales of variability we aim to examine. The OSSEs simulated the observational scales of pCO2ocean in ways that are comparable to existing ocean CO2 observing platforms (ships, Wave Gliders, carbon floats, Saildrones) in terms of their temporal sampling scales and not necessarily their spatial ones. The pCO2 reconstructions were carried out using a two-member ensemble approach that consisted of two machine learning (ML) methods, (1) the feed-forward neural network and (2) the gradient boosting machines. The baseline data were from the ship-based simulations mimicking ship-based observations from the Surface Ocean CO2 Atlas (SOCAT). For each of the sampling-scale scenarios, we applied the two-member ensemble method to reconstruct the full sub-domain pCO2ocean. The reconstruction skill was then assessed through a statistical comparison of reconstructed pCO2ocean and the model domain mean. The analysis shows that uncertainties and biases for pCO2ocean reconstructions are very sensitive to both the spatial and the temporal scales of pCO2 sampling in the model domain. The four key findings from our investigation are as follows: (1) improving ML-based pCO2 reconstructions in the Southern Ocean requires simultaneous high-resolution observations (<3 d) of the seasonal cycle of the meridional gradients of pCO2ocean; (2) Saildrones stand out as the optimal platforms to simultaneously address these requirements; (3) Wave Gliders with hourly/daily resolution in pseudo-mooring mode improve on carbon floats (10 d period), which suggests that sampling aliases from the 10 d sampling period might have a greater negative impact on their uncertainties, biases, and reconstruction means; and (4) the present seasonal sampling biases (towards summer) in SOCAT data in the Southern Ocean may be behind a significant winter bias in the reconstructed seasonal cycle of pCO2ocean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.