Abstract

Ocean dynamics play a key role in the climate system, by redistributing heat and freshwater. The uncertainty of how these processes are represented in climate models, and how this uncertainty affects future climate projections can be investigated using perturbed physics ensembles of global circulation models (GCMs). Techniques such as flux adjustments should be avoided since they can impact the sensitivity of the ensemble to the imposed forcing. In this study a method for developing an coupled ensemble with a GCM that does not use flux adjustment is presented. The ensemble is constrained by using information from a prior ensemble with a mixed layer ocean coupled to an atmosphere GCM, to reduce drifts in the coupled ensemble. Constraints on parameter perturbations are derived by using observational constraints on surface temperature, and top of the atmosphere radiative fluxes. As an example of such an ensemble developed with this methodology, uncertainty in response of the meridional overturning circulation (MOC) to increased CO2 concentrations is investigated. The ensemble mean MOC strength is 17.1 Sv and decreases by 2.1 Sv when greenhouse gas concentrations are doubled. No rapid changes or shutdown of the MOC are seen in any of the ensemble members. There is a strong negative relationship between global mean temperature and MOC strength across the ensemble which is not seen in a multimodel ensemble. A positive relationship between climate sensitivity and the decrease of MOC strength is also seen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call