Abstract

Abstract This paper discusses the sensitivity of the isentropic slope in a primitive equation dry model forced with Newtonian cooling when the heating is varied. This is done in two different ways, changing either the radiative equilibrium baroclinicity or the diabatic time scale for the zonal-mean flow. When the radiative equilibrium baroclinicity is changed, the isentropic slope remains insensitive against changes in the forcing, in agreement with previous results. However, the isentropic slope steepens when the diabatic heating rate is accelerated for the zonal-mean flow. Changes in the ratio between the interior and the boundary diffusivities as the diabatic heating rate is varied appear to be responsible for the violation of the constant criticality constraint in this model. Theoretical arguments are used to relate the sensitivity of the isentropic slope to that of the isentropic mass flux, which also remains constant when the radiative-equilibrium baroclinicity is changed. The sensitivity of the isentropic mass flux on the heating depends on how the gross stability changes. Bulk stabilities calculated from isobaric averages and gross stabilities estimated from isentropic diagnostics are not necessarily equivalent because a significant part of the return flow occurs at potential temperatures colder than the mean surface temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.