Abstract

ABSTRACTPerforming a classical atmospheric correction over water requires a well-defined climatology representative of the aerosols encountered in the remote areas of oceans. Different climatologies built up at the global scale are candidates to be implemented, as an auxiliary data file (ADF) including look-up tables (LUTs) with radiative properties of the aerosols, in a traditional atmospheric correction algorithm. In addition to these, two regional climatologies were developed in the 2-Seas region, comprising both the Eastern English Channel and the North Sea, and at the Acqua Alta Oceanographic Tower (AAOT) in the Adriatic Sea. By using the optical data processor of the European Space Agency (ODESA), Medium Resolution Imaging Spectrometer (MERIS) level-1 (L1) data extracted from the MERis MAtchup In-situ Database (MERMAID) were processed to obtain the level-2 (L2) products over water. For a given climatology, a full processing chain was developed to generate the MERIS aerosol LUTs suitable to ODESA. The final step consisted of an analysis of the L2 products, for both the aerosols and marine reflectance, in the framework of the evaluation of the performance of each climatology in atmospheric correction over oceans. Finally, we recommend using the regional aerosol climatologies available from the AErosol RObotic NETwork (AERONET) database, at least for the retrieval of the L2 aerosol product. In regard to marine reflectance, this remains more challenging and needs a more extensive analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call