Abstract

The dominant process adding nitrogen (N) to the ocean, di-nitrogen (N2) fixation, is mediated by prokaryotes (diazotrophs) sensitive to a variety of environmental factors. In particular, it is often assumed that consequential rates of marine N2 fixation do not occur where concentrations of nitrate (NO−3) and/or ammonium (NH+4) exceed 1μM because of the additional energetic cost associated with assimilating N2 gas relative to NO−3 or NH+4. However, an examination of culturing studies and in situ N2 fixation rate measurements from marine euphotic, mesopelagic, and benthic environments indicates that while elevated concentrations of NO−3 and/or NH+4 can depress N2 fixation rates, the process can continue at substantial rates in the presence of as much as 30μM NO−3 and/or 200μM NH+4. These findings challenge expectations of the degree to which inorganic N inhibits this process. The high rates of N2 fixation measured in some benthic environments suggest that certain benthic diazotrophs may be less sensitive to prolonged exposure to NO−3 and/or NH+4 than cyanobacterial diazotrophs. Additionally, recent work indicates that cyanobacterial diazotrophs may have mechanisms for mitigating NO−3 inhibition of N2 fixation. In particular, it has been recently shown that increasing phosphorus (P) availability increases diazotroph abundance, thus compensating for lower per-cell rates of N2 fixation that result from NO−3 inhibition. Consequently, low ambient surface ocean N:P ratios such as those generated by the increasing rates of N loss thought to occur during the last glacial to interglacial transition may create conditions favorable for N2 fixation and thus help to stabilize the marine N inventory on relevant time scales. These findings suggest that restricting measurements of marine N2 fixation to oligotrophic surface waters may underestimate global rates of this process and contribute to uncertainties in the marine N budget.

Highlights

  • Phytoplankton growing in the sunlit surface ocean produce organic matter via photosynthesis at a rate of ∼50 Pg C year−1 (Westberry et al, 2008), and play an important role in the global carbon (C) cycle

  • Low ambient surface ocean N:P ratios such as those generated by the increasing rates of N loss thought to occur during the last glacial to interglacial transition may create conditions favorable for N2 fixation and help to stabilize the marine N inventory on relevant time scales. These findings suggest that restricting measurements of marine N2 fixation to oligotrophic surface waters may underestimate global rates of this process and contribute to uncertainties in the marine N

  • Culture and field evidence reviewed here indicates that low concentrations of NO−3 and/or NH+4 (≤1 μM) are not a strict requirement for high rates of marine N2 fixation, and that numerical models using this as a criteria for significant diazotroph abundance and/or N2 fixation fluxes may not accurately represent diazotroph sensitivities to dissolved inorganic N (DIN)

Read more

Summary

Introduction

Phytoplankton growing in the sunlit surface ocean (euphotic zone) produce organic matter via photosynthesis at a rate of ∼50 Pg C year−1 (Westberry et al, 2008), and play an important role in the global carbon (C) cycle. An examination of culturing studies and in situ N2 fixation rate measurements from marine euphotic, mesopelagic, and benthic environments indicates that while elevated concentrations of NO−3 and/or NH+4 can depress process can continue at substantial rates in the presence of as much

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.