Abstract

Temsavir binds directly to the HIV-1 envelope glycoprotein gp120 and selectively inhibits interactions between HIV-1 and CD4 receptors. Previous studies identified gp120 amino acid positions where substitutions are associated with reduced susceptibility to temsavir. The mechanism by which temsavir susceptibility is altered in these envelope glycoproteins was evaluated. Pseudoviruses encoding gp120 substitutions alone (S375H/I/M/N, M426L, M434I, M475I) or in combination (S375H + M475I) were engineered on a wild-type JRFL background. Temsavir-gp120 and CD4-gp120 binding kinetics and ability of temsavir to block CD4-gp120 binding were evaluated using the purified polymorphic gp120 proteins and a Creoptix® WAVE Delta grating-coupled interferometry system. Fold-change in half-maximal inhibitory concentration (IC50) in JRFL-based pseudoviruses containing the aforementioned polymorphisms relative to that of wild-type ranged from 4-fold to 29,726-fold, while temsavir binding affinity for the polymorphic gp120 proteins varied from 0.7-fold to 73.7-fold relative to wild-type gp120. Strong correlations between temsavir IC50 and temsavir binding affinity (r = 0.7332; P = 0.0246) as well as temsavir binding on-rate (r = −0.8940; P = 0.0011) were observed. Binding affinity of gp120 proteins for CD4 varied between 0.4-fold and 3.1-fold compared with wild-type gp120; no correlations between temsavir IC50 and CD4 binding kinetic parameters were observed. For all polymorphic gp120 proteins, temsavir was able to fully block CD4 binding; 3 polymorphs required higher temsavir concentrations. Loss of susceptibility to temsavir observed for gp120 polymorphisms strongly correlated with reductions in temsavir binding on-rate. Nonetheless, temsavir retained the ability to fully block CD4-gp120 engagement given sufficiently high concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.