Abstract
This paper proposes a novel semi-supervised classification method of petrol and diesel passenger cars using OBD data and support vector machine (SVM) algorithm. The proposed method first develops a classification rule of petrol and diesel passenger cars based on vehicle speed as well as engine RPM obtained from the on-board diagnostic (OBD) data with specific passenger car identification number (ID). Then the proposed method could primarily label petrol or diesel to the passenger car with specific ID using the classification rule. Next this paper apply support vector machine to create a classification model of petrol and diesel passenger cars based on the primary classification results, and to perform refined classification tasks. Experimental results show the correctness of the proposed semi-supervised petrol and diesel passenger car classification method can achieve 1.5% calibration rate from more than 35,000 real OBD data. The proposed method has the potential of applying to internet of vehicle (IoV) and to improve on-road CO2 emission estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.