Abstract

Flavodiiron nitric oxide reductases (FNORs) are a subclass of flavodiiron proteins (FDPs) capable of preferential binding and subsequent reduction of NO to N2O. FNORs are found in certain pathogenic bacteria, equipping them with resistance to nitrosative stress, generated as a part of the immune defense in humans, and allowing them to proliferate. Here, we report the spectroscopic characterization and detailed reactivity studies of the diiron dinitrosyl model complex [Fe2(BPMP)(OPr)(NO)2](OTf)2 for the FNOR active site that is capable of reducing NO to N2O [Zheng et al., J. Am. Chem. Soc. 2013, 135, 4902-4905]. Using UV-vis spectroscopy, cyclic voltammetry, and spectro-electrochemistry, we show that one reductive equivalent is in fact sufficient for the quantitative generation of N2O, following a semireduced reaction mechanism. This reaction is very efficient and produces N2O with a first-order rate constant k > 102 s-1. Further isotope labeling studies confirm an intramolecular N-N coupling mechanism, consistent with the rapid time scale of the reduction and a very low barrier for N-N bond formation. Accordingly, the reaction proceeds at -80 °C, allowing for the direct observation of the mixed-valent product of the reaction. At higher temperatures, the initial reaction product is unstable and decays, ultimately generating the diferrous complex [Fe2(BPMP)(OPr)2](OTf) and an unidentified ferric product. These results combined offer deep insight into the mechanism of NO reduction by the relevant model complex [Fe2(BPMP)(OPr)(NO)2]2+ and provide direct evidence that the semireduced mechanism would constitute a highly efficient pathway to accomplish NO reduction to N2O in FNORs and in synthetic catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call