Abstract
The set Dn of all n × n doubly-stochastic matrices is a semigroup with respect to ordinary matrix multiplication. This note is concerned with the determination of the maximal subgroups of Dn. It is shown that the number of subgroups is finite, that each subgroup is finite and is in fact isomorphic to a direct product of symmetric groups. These results are applied in § 3 to yield information about the least number of permutation matrices whose convex hull contains a given doubly-stochastic matrix.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Glasgow Mathematical Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.