Abstract

AbstractTo date, very few studies have focused on dust and sea salt cloud interactions, particularly the semidirect effect (SDE) that results from changes in column temperature and moisture. Here, we isolate the SDE using several climate models driven by semiempirical dust and sea salt direct radiative effects. The global annual mean SDE varies from 0.01 to 0.10 W/m2, with the bulk of the signal coming from an increase in shortwave radiation. This is consistent with decreases in low cloud over ocean due to cloud burn‐off and reductions in midlevel cloud over land due to atmospheric stabilization and decreased convection. Overall, longwave effects weaken the positive SDE but with opposing effects over land and sea. High cloud is reduced over land but enhanced over sea. We conclude that dust and sea salt likely exert a global mean warming effect through cloud rapid adjustments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.