Abstract

We establish the semiclassical limit of the one-dimensional defocusing cubic nonlinear Schrodinger (NLS) equation. Complete integrability is exploited to obtain a global characterization of the weak limits of the entire NLS hierarchy of conserved densities as the field evolves from reflectionless initial data under all the associated commuting flows. Consequently, this also establishes the zero-dispersion limit of the modified Korteweg‐de Vries equation that resides in that hierarchy. We have adapted and clarified the strategy introduced by Lax and Levermore to study the zero-dispersion limit of the Korteweg‐de Vries equation, expanding it to treat entire integrable hierarchies and strengthening the limits obtained. A crucial role is played by the convexity of the underlying log-determinant with respect to the times associated with the commuting flows. c 1999 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.