Abstract
A rigorous probabilistic construction of Liouville conformal field theory (LCFT) on the Riemann sphere was recently given by David–Kupiainen and the last two authors. In this paper, we focus on the connection between LCFT and the classical Liouville field theory via the semiclassical approach. LCFT depends on a parameter γ∈(0,2) and the limit γ→0 corresponds to the semiclassical limit of the theory. Within this asymptotic and under a negative curvature condition (on the limiting metric of the theory), we determine the limit of the correlation functions and of the associated Liouville field. We also establish a large deviation result for the Liouville field: as expected, the large deviation functional is the classical Liouville action. As a corollary, we give a new (probabilistic) proof of the Takhtajan–Zograf theorem which relates the classical Liouville action (taken at its minimum) to Poincaré’s accessory parameters. Finally, we gather conjectures in the positive curvature case (including the study of the so-called quantum spheres introduced by Duplantier–Miller–Sheffield).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annales de la Faculté des sciences de Toulouse : Mathématiques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.