Abstract
This study presents a methodology for a high-throughput digitization and quantification process of plant cell walls characterization, including the automated development of two-dimensional finite element models. Custom algorithms based on machine learning can also analyze the cellular microstructure for phenotypes such as cell size, cell wall curvature, and cell wall orientation. To demonstrate the utility of these models, a series of compound microscope images of both herbaceous and woody representatives were observed and processed. In addition, parametric analyses were performed on the resulting finite element models. Sensitivity analyses of the structural stiffness of the resulting tissue based on the cell wall elastic modulus and the cell wall thickness; demonstrated that the cell wall thickness has a three-fold larger impact of tissue stiffness than cell wall elastic modulus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.