Abstract
A map is a connected topological graph cellularly embedded in a surface. For a given graph Γ, its genus distribution of rooted maps and embeddings on orientable and non-orientable surfaces are separately investigated by many researchers. By introducing the concept of a semi-arc automorphism group of a graph and classifying all its embeddings under the action of its semi-arc automorphism group, we find the relations between its genus distribution of rooted maps and genus distribution of embeddings on orientable and non-orientable surfaces, and give some new formulas for the number of rooted maps on a given orientable surface with underlying graph a bouquet of cycles B n , a closed-end ladder L n or a Ringel ladder R n . A general scheme for enumerating unrooted maps on surfaces(orientable or non-orientable) with a given underlying graph is established. Using this scheme, we obtained the closed formulas for the numbers of non-isomorphic maps on orientable or non-orientable surfaces with an underlying bouquet B n in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.