Abstract

AbstractDahlquist, Liniger, and Nevanlinna design a family of one-leg, two-step methods (the DLN method) that is second order, $$\varvec{A}-$$ A - and $$\varvec{G}-$$ G - stable for arbitrary, non-uniform time steps. Recently, the implementation of the DLN method can be simplified by the refactorization process (adding time filters on the backward Euler scheme). Due to these fine properties, the DLN method has strong potential for the numerical simulation of time-dependent fluid models. In the report, we propose a semi-implicit DLN algorithm for the Navier-Stokes equations (avoiding non-linear solver at each time step) and prove the unconditional, long-term stability, and second-order convergence with the moderate time step restriction. Moreover, the adaptive DLN algorithms by the required error or numerical dissipation criterion are presented to balance the accuracy and computational cost. Numerical tests will be given to support the main conclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.