Abstract

The existence of humans and the preservation of the natural ecological equilibrium depend greatly on trees. The semantic segmentation of trees is very important. It is crucial to learn how to properly and automatically extract a tree’s elements from photographic images. Problems with traditional tree image segmentation include low accuracy, a sluggish learning rate, and a large amount of manual intervention. This research suggests the use of a well-known network segmentation technique based on deep learning called Yolo v7 to successfully accomplish the accurate segmentation of tree images. Due to class imbalance in the dataset, we use the weighted loss function and apply various types of weights to each class to enhance the segmentation of the trees. Additionally, we use an attention method to efficiently gather feature data while reducing the production of irrelevant feature data. According to the experimental findings, the revised model algorithm’s evaluation index outperforms other widely used semantic segmentation techniques. In addition, the detection speed of the Yolo v7 model is much faster than other algorithms and performs well in tree segmentation in a variety of environments, demonstrating the effectiveness of this method in improving the segmentation performance of the model for trees in complex environments and providing a more effective solution to the tree segmentation issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.