Abstract
Strongly concentration dependent, 1H NMR chemical shifts of the non-steroidal anti-inflammatory drug acemetacin sodium salt (sodium {[1-(4-chlorobenzoyl)-5-methoxy-2-methylindol-3-yl]acetoxy}acetate), were observed in aqueous solution. Self-titration and nOe experiments, point to a self-association model where stacking takes place via the indole portion of the drug. In addition, conformational isomerism (atropisomerism) of the anti to syn form was confirmed. Further increase of the concentration eventually led to stable chemical shifts and nearly simultaneous appearance of microcrystals. In the presence of βCD, 1:1 inclusion complexation occurred through the p-chlorobenzoyl part of the drug, whereas with excess βCD the indole part seemed to participate to a minor degree. The anti isomer is suggested to be involved in the inclusion process. In addition, aggregation of acemetacin was also evident, as competing with the conformational and inclusion equilibria. The present case demonstrates that many competitive processes are simultaneously active in a seemingly simple system. The measurements were strongly dependent upon the pH and use of buffered solutions was mandatory. Finally, for the quantitative analysis of acemetacin in the presence of βCD, a special HPLC method was developed. The stability of the drug, studied by the identification of the degradation products and the pseudo-first order rate of hydrolysis, was found to be unaffected by the presence of βCD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.