Abstract

The cyclotides are a family of small head-to-tail cyclic plant defense proteins. In addition to their cyclic backbone, cyclotides comprise three disulfide bonds in a knotted arrangement, resulting in a highly cross-braced structure that provides exceptional chemical and proteolytic stability. A number of bioactivities have been associated with cyclotides, including insecticidal, antimicrobial, anti-viral and cytotoxic, and these activities are related to an ability to target and disrupt biological membranes. Kalata B2 and to a lesser extent kalata B1, isolated from Oldenlandia affinis, self-associate to tetramers and octamers in aqueous buffers, and this oligomerization has been suggested to be relevant for their ability to form pores in membranes. Here we demonstrate by solution NMR spectroscopy analysis that the oligomerization of kalata B2 is concentration dependent and that it involves the packing of hydrophobic residues normally exposed on the surface of kalata B2 into a multimeric hydrophobic core. Interestingly, the hydrophobic surface that is "quenched" has previously been shown to be responsible for the ability of kalata B2 to insert into membranes. Thus, it seems unlikely that the oligomers observed in aqueous solution are related to any multimeric state present in a membrane environment, and responsible for the formation of pores. The ability to self-associate might alternatively provide a mechanism for preventing self-toxicity when stored at high concentrations in intracellular compartments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.