Abstract
Synthetic myosin thick filaments were formed from preparations of electrophoretically homogeneous myosin isolated from Chaos carolinensis and Amoeba proteus when dialysed to physiological ionic strength and pH. Myosin dialysed directly against low ionic strength buffers formed native-like thick filaments in the presence and absence of exogenous divalent cations. The average dimensions of the synthetic filaments grown under these conditions were 455 nm long and 16 nm wide with a distinct bare central zone 174 nm long. Myosin predialysed against EGTA-EDTA solutions at high ionic strength and then dialysed to low ionic strength formed native-like filaments only in the presence of 1mM Mg2+. 1 mM Ca2+ could not be substituted for Mg2+ under these conditions to achieve native-like filaments. Filaments grown from predialysed myosin in the absence of Mg2+ resembled EGTA-dissociated myosin filaments observed in EGTA-treated cytoplasm and were highly branched, poorly formed filaments lacking a distinct bare central zone. The average dimensions of the filaments grown from predialysed myosin in the absence of Mg2+ were 328 nm long, 13 nm wide with a bare central zone 111 nm long. Under the conditions tested, myosin isolated from these amoebae did not demonstrate a divalent cation requirement for thick filament formation. The results obtained with myosin isolated from the 2 organisms were identical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.