Abstract

Attractor neural networks (ANNs) based on the Ising model are naturally fully connected and are homogeneous in structure. These features permit a deep understanding of the underlying mechanism, but limit the applicability of these models to the brain. A more biologically realistic model can be derived from an equally simple physical model by utilizing recurrent self-trapping inputs to supplement very sparse intranetwork interactions. This paper reports the analysis of a one-dimensional (1-D) ANN coupled to a second system that computes overlaps with a single stored memory. Results show that: 1) the 1-D self-trapping model is equivalent to an isolated ANN with both full connectivity of one strength and nearest neighbor synapses of an independent strength; 2) the dynamics of ANN and self-trapping updates are independent; 3) there is a critical synaptic noise level below which memory retrieval occurs; 4) the 1-D self-trapping model converges to a fully connected Hopfield model for zero strength nearest neighbor synapses, and has a greater magnitude memory overlap for nonzero strength nearest neighbor synapses; and (5) the mechanism of self-trapping is an iterative map on the mean overlap as a function of the reentrant input.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.