Abstract

In this study we consider adaptive power beaming with a fiber-array laser transmitter system in presence of atmospheric turbulence. For optimization of power transition through the atmosphere a fiber-array is traditionally controlled by stochastic parallel gradient descent (SPGD) algorithm where control feedback is provided via a radio frequency link by an optical-to-electrical power conversion sensor, attached to a cooperative target. The SPGD algorithm continuously and randomly perturbs voltages applied to fiber-array phase shifters and fiber tip positioners in order to maximize sensor signal, i.e. uses, the so-called, “blind” optimization principle. By contrast to this approach a prospective artificially intelligent (AI) control systems for synthesis of optimal control can utilize various pupil- or target-plane data available for the analysis including wavefront sensor data, photo-voltaic array (PVA) data, other optical or atmospheric parameters, and potentially can eliminate well-known drawbacks of SPGDbased controllers. In this study an optimal control is synthesized by a deep neural network (DNN) using target-plane PVA sensor data as its input. A DNN training is occurred online in sync with control system operation and is performed by applying of small perturbations to DNN’s outputs. This approach does not require initial DNN’s pre-training as well as guarantees optimization of system performance in time. All theoretical results are verified by numerical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.