Abstract
We prove a long-standing conjecture on random-cluster models, namely that the critical point for such models with parameter q ≥ 1 on the square lattice is equal to the self-dual point \({p_{sd}(q) = \sqrt{q} / (1+\sqrt{q})}\). This gives a proof that the critical temperature of the q-state Potts model is equal to \({\log (1+\sqrt q)}\) for all q ≥ 2. We further prove that the transition is sharp, meaning that there is exponential decay of correlations in the sub-critical phase. The techniques of this paper are rigorous and valid for all q ≥ 1, in contrast to earlier methods valid only for certain given q. The proof extends to the triangular and the hexagonal lattices as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.