Abstract

Impaired fracture healing is of high clinical relevance, as up to 15% of patients with long-bone fractures display non-unions. Fracture patients also include individuals treated with selective norepinephrine reuptake inhibitors (SNRI). As SNRI were previously shown to negatively affect bone homeostasis, it remained unclear whether patients with SNRI are at risk of impaired bone healing. Here, we show that daily treatment with the SNRI reboxetine reduces trabecular bone mass in the spine but increases cortical thickness and osteoblast numbers in the femoral midshaft. Most importantly, reboxetine does not impair bone regeneration in a standardized murine fracture model, and even improves callus bridging and biomechanical stability at late healing stages. In sum, reboxetine affects bone remodeling in a site-specific manner. Treatment does not interfere with the early and intermediate stages of bone regeneration and improves healing outcomes of the late-stage fracture callus in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call