Abstract

The corrole ligand serves as a versatile tri-anionic, macrocyclic platform on which to model biological catalytic systems, as well as to effect mechanistically challenging chemical transformations. Here in we describe the synthesis, structure, and characterization of an isomerically pure corrole ligand, selectively mono-brominated at the β-carbon position adjacent to the corrole C-C bond (2-C) and produced in relatively high yields, as well as its iron chloride complex. Analysis of the iron metalated complex by cyclic voltammetry shows that the bromine being present on the ligand resulted in anodic shifts of +93 and +63 mV for first oxidation and first reduction of the complex respectively. The Mossbauer spectrum of the iron metalated complex shows negligible change relative to the non-brominated analog, indicating the presence of the halide substituent predominantly effects the orbitals of the ligand rather than the metal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.