Abstract

The honey bee ectoparasite Varroa destructor is the main cause of honey bee colony losses worldwide. Over the last decades, several projects have focused on improving the robustness of Apis mellifera against this parasitic mite. Selection traits, such as mite non-reproduction (MNR) and Varroa sensitive hygiene (VSH), are favored selection factors in Varroa resistance projects. VSH is a trait where adult honey bees remove the Varroa-infested brood. During this process, the female mites are arrested in their reproductive cycle leading to a reduction of the Varroa population within the bee colony. From 2019 to 2022, 1402 queens were instrumentally inseminated with single or multiple drones in a breeding program. Colonies headed by these queens were established annually, and the MNR and VSH levels were analyzed. VSH was evaluated in response to cells artificially infested with Varroa, and colonies with high VSH values were used to generate our selected VSH stock. Despite crossing high VSH drones and queens, we measured a remarkable heterogeneity of MNR and VSH in the next generation(s), most likely due to the well-described, high recombination rate in the honey bee genome. When assessed multiple times in the same colony, great variance between measurements was observed. Detailed evaluations of daughter colonies are thus required if selection programs want to breed colonies with reliable VSH traits. This constant need to evaluate all offspring to ensure the desirable resistance traits are present results in high workloads and great expenses in selection programs. Furthermore, such large-scale breeding programs are inefficient due to high fluctuations between measurements and generations, indicating we need to develop new approaches and improved methods for assessing Varroa resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.